NOAA Integrated Ocean and Coastal Mapping Seafloor Mapping Standards October 2011

This document provides a set of guidelines, based on the International Hydrographic Organization's (IHO) Order 1 standard, for the collection and processing of seafloor mapping data such that they may be used confidently by any NOAA program. Adherence to these guidelines will allow products from hydrographic or fisheries surveys to be used for either nautical charting or essential fish-habitat mapping purposes. These guidelines are aligned with the NOAA Integrated Ocean and Coastal Mapping (IOCM) concept and resulted from a workshop on Coastal Seafloor Mapping Standards, held in April 2006 at the Joint Hydrographic Center, University of New Hampshire. The workshop included representatives of NOAA organizations with seafloor mapping missions.

This document is intended to guide the collections of Sonar and physical data such that it may be most useful to the largest number of users requiring seabed mapping and classification products. The scope of this guideline covers single beam sonar, multi beam sonar, interferometric sonar, side scan sonar, Lidar, physical seafloor samples, optical seafloor samples and detached positions for objects. To optimize the value of seafloor data the guidelines tabulated below should be met when and where it is deemed to <u>not interfere with the principal mission</u>. Data collectors may choose to surpass the guidelines are intended to cover the technical requirements of data collection only. It is the responsibility of the project manager to ensure compliance with all administrative, environmental, permitting or other federal/state compliance issues that may occur during the project planning and execution.

These guidelines are relevant for surveys in water depths greater than 5 m, and extending to the limits of the continental margin. In depths shallower than 5 m, single-beam, side scan, or interferometric sonar, Lidar, or aerial/satellite imagery should be used.

The guidelines are not conditions for the acceptance of seafloor mapping data by a NOAA data center. Incomplete adherence to these guidelines due to variations in resources (e.g., time, equipment, corrections, or expertise to collect and processes seafloor samples) does not negate the inherent value of the seafloor data. Long term, NOAA should endeavor to make the resources needed to meet these standards available on all available platforms.

Guidance for seafloor mapping projects can be provided through the various efforts of the offices of Office of Coast Survey (OCS), Joint Hydrographic Center (JHC), Center for Operational Oceanographic Products and Services (CO-OPS), National Centers for Coastal Ocean Science (NCCOS), National Geodetic Survey (NGS), National Environmental Satellite, Data, and Information Service (NESDIS), Nation Marine Sanctuaries, and the six regional Fisheries Science Centers of the National Marine

Fisheries Service (NMFS). Project planning, development, execution and data storage are all important elements in ensuring a successful seafloor mapping project. For the best project coordination, one or more of these offices should be included in the planning stage at least one year prior to any anticipated data collection. This would ensure the broadest range of partners and collective project success.

For additional technical information and guidance, consult the NOS Hydrographic Specifications (<u>http://www.nauticalcharts.noaa.gov/hsd/specs/SPECS_2011.pdf</u>).

Any mention of a commercial company or product within this manual does not constitute an endorsement by NOAA. The use for publicity or advertising purposes of information concerning proprietary products or software or the tests of such products is not authorized.

SpecificationGuidelineSonarDepth Range (m)*Frequency (f; kHz)frequency5-100 $240 < f \le -450$ $50-200$ $180 < f \le 240$ $200-1000$ $50 < f \le 180$ $1000-3000$ $12 < f \le 50$ $3000-12000$ $f \le 12$ SamplingFull coverage with 5% overlap. Reconnaissance-style mapping may becoveragenecessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepthDepth is measured from the sensor face. For sonars deployed fromreferencesubmersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth95% probability level, after corrections for systematic error, e.g., water level, $\pm \sqrt{[a^2 + (b * d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Service's or shore-based kinematic GPS are not available, the		Seaffoor Mapping G	inuennes
frequency $5-100$ $240 < f \le 450$ $50-200$ $180 < f \le 240$ $200-1000$ $50 < f \le 180$ $1000-3000$ $12 < f \le 50$ $3000-12000$ $f \le 12$ SamplingFull coverage with 5% overlap. Reconnaissance-style mapping may becoveragenecessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepthDepth is measured from the sensor face. For sonars deployed fromsubmersibles, the estimated depth of the transducer face depends on thedelay from the last GPS-estimated position and account should be madefor inertia-sensor drift.Depth95% probability level, after corrections for systematic error, e.g., wateruncertaintylevel, $= \pm \sqrt{[a^2 + (b * d]^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is thedepth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)VerticalDepths should be referenced to the appropriate Chart Datum (e.g., MeanLower Low Water or Low Water Datum in non-tidal areas), or WGS 84ellipsoid, and consider tide predictions, water level observations, datumreferences and zone corrections. The practical minimum for water levelerror is 0.20 m and allowable maximum is 0.45 m at the 95%confidence level. Coordinate, in advance of surveys, with the NationalOcean Service's (NOS) Center for Operational Oceanographic Productsand Services (CO-OPS), to prepare tidal zoning charts. This mayrequire the installation of water level gauges or, in areas where waterlevel gauges or shore-based kinematic GPS are not available, theinstallation	Specification	Guideline	
50-200 $180 < f \le 240$ 200-1000 $50 < f \le 180$ 1000-3000 $12 < f \le 50$ 3000-12000 $f \le 12$ Sampling coverageFull coverage with 5% overlap. Reconnaissance-style mapping may be necessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $= \pm \sqrt{[a^2 + (b * d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning Charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Sonar	Depth Range (m)	1 5 6 7
$200-1000$ $50 < f \le 180$ $1000-3000$ $12 < f \le 50$ $3000-12000$ $f \le 12$ Sampling coverageFull coverage with 5% overlap. Reconnaissance-style mapping may be necessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	frequency	5-100	240 <f<-450< td=""></f<-450<>
$1000-3000$ $12 \le f \le 50$ $3000-12000$ Sampling coverageFull coverage with 5% overlap. Reconnaissance-style mapping may be necessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $= \pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		50-200	180< <u>f</u> ≤240
3000-12000 $f \le 12$ Sampling coverageFull coverage with 5% overlap. Reconnaissance-style mapping may be necessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $= \pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		200-1000	50 <f≤180< td=""></f≤180<>
Sampling coverageFull coverage with 5% overlap. Reconnaissance-style mapping may be necessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepth should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		1000-3000	12< <i>f</i> ≤50
coveragenecessary due to time constraints.Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepthDepth is measured from the sensor face. For sonars deployed fromreferencesubmersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		3000-12000	$f \leq 12$
Resolution2 m resolution in 5 m to 40 m depths; 5% of depth beyond 40 mDepthDepth is measured from the sensor face. For sonars deployed fromreferencesubmersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized gPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Sampling	Full coverage with 5	% overlap. Reconnaissance-style mapping may be
Depth referenceDepth is measured from the sensor face. For sonars deployed from submersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	coverage	necessary due to tim	e constraints.
referencesubmersibles, the estimated depth of the transducer face depends on the delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Resolution	2 m resolution in 5 n	n to 40 m depths; 5% of depth beyond 40 m
delay from the last GPS-estimated position and account should be made for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Depth	Depth is measured fi	om the sensor face. For sonars deployed from
for inertia-sensor drift.Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	reference		
Depth uncertainty95% probability level, after corrections for systematic error, e.g., water level, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		delay from the last C	PS-estimated position and account should be made
uncertaintylevel, $=\pm \sqrt{[a^2 + (b*d)^2]}$, where $a = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		for inertia-sensor dri	ft.
Indexer, $-1\sqrt{10} + (0 \times d)$], where $d = 0.5$ m, $b = 0.013$, and d is the depth (= 0.5 m at 5 m depth, and = 2.6 m at 200 m depth)Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	-	95% probability leve	el, after corrections for systematic error, e.g., water
Vertical ReferenceDepths should be referenced to the appropriate Chart Datum (e.g., Mean Lower Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	uncertainty	level, = $\pm \sqrt{[a^2 + (b^*)]}$	$(d)^{2}$], where $a = 0.5$ m, $b = 0.013$, and d is the
Reference Low Water or Low Water Datum in non-tidal areas), or WGS 84 ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		depth (= 0.5 m at 5 m	n depth, and $= 2.6$ m at 200 m depth)
ellipsoid, and consider tide predictions, water level observations, datum references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Vertical	Depths should be ref	erenced to the appropriate Chart Datum (e.g., Mean
references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the	Reference	Lower Low Water of	r Low Water Datum in non-tidal areas), or WGS 84
references and zone corrections. The practical minimum for water level error is 0.20 m and allowable maximum is 0.45 m at the 95% confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		ellipsoid, and consid	er tide predictions, water level observations, datum
confidence level. Coordinate, in advance of surveys, with the National Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the			1
Ocean Service's (NOS) Center for Operational Oceanographic Products and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the			
and Services (CO-OPS), to prepare tidal zoning charts. This may require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the			
require the installation of water level gauges or, in areas where water level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the			
level gauges or shore-based kinematic GPS are not available, the installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the			
installation of specialized GPS equipment on the survey vessel and subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		-	
subscription to specialized globally-corrected GPS (GcGPS) services. Platforms with inertial motion unit (IMU) systems should record the		00	
Platforms with inertial motion unit (IMU) systems should record the		1	1 1 5
		1 1	e
raw data input to the INIO.		raw data input to the	

NOAA IOCM Seafloor Mapping Guidelines

XX 1	
Horizontal	Positions referenced to WGS 84 (NAD 83)
Reference	
Horizontal	95% probability level, after corrections for systematic error, e.g., water
uncertainty	level, $=5 \text{ m} + 5\%$ of depth (5.25 m at 5 m depth $= 0.003$ latitude min, 15
	m at $200 \text{ m} = 0.008$ latitude min.)
Backscatter	Collect over the full-depth range. This is dependent on the sonar-
	system's capability. If constrained by data storage capacity, reduce the
	sampling rate or store only average beam intensities.
Classification	Optical or grab samples sufficient in quality and quantity to ground
ground truth	truth areas of backscatter differentiation, and not to exceed a lateral
	spacing of 2000 m. Unless required by the primary mission, optical or
	physical sampling of the seafloor is not required in depths exceeding
	100 m.
Metadata	Minimum FGDC compliant; ISO 19115 preferred.
Archiving	Raw and processed geophysical data, with metadata, should be
	submitted to National Geophysical Data Center (NGDC) within 1 year
	of acquisition. Additional oceanographic data should be delivered to the
	National Oceanographic Data Center (NODC) also within 1 year of
	collection. Raw data is in the form generated by the sensor, without
	corrections applied.
Sound speed	Sound-speed profiles are needed to correct soundings for refraction.
profiles	These should be measured with casts of a Conductivity, Temperature,
	and Depth sensor (CTD), a Sound Velocity Probe (SVP), or an
	Expendable Bathy Thermograph (XBT). Depending upon the type of
	mapping project and the time spent in a location, sound speed profiles
	samples could be obtained at various intervals with single beam sonars
	typically needing fewer corrections than multi beam sonars. Casts may
	need to be made frequently, e.g., 2 hr or less, in areas of increased water
	column variability, such as areas of high tidal ranges, river deltas, or
	fresh-water outflows. Profiles may be estimated using XBT data, while
	in transit collected at least twice a day in open-ocean and more
	frequently (e.g., 4-6 casts per day) in continental-shelf areas. To
	estimate sound speed profiles from XBT data, the depth-averaged mean
	salinity from a nearby CTD cast should be used to compute sound speed
	and <i>not</i> the salinity measured at the sea surface. For sound speed data
	collected during transits, a few casts may not provide accurate ray-
	tracing solutions; these may be used, however, to bracket the estimates
	of uncertainty due to refraction. For beam-steering sonars,
	measurements of sound speed should be made continuously at the
	location of the sonar transducer.
L	

Patch tests	Conduct semi-annually, after any disturbance of the sensors, or when data quality is questionable. Multi-beam patch-test procedures are described in the <u>NOS Hydrographic Specifications</u> , section 5.2.4.1. An example of multi-beam spherical water column patch test procedures are described in the Simrad ER60 Operators manual on page 20 located at <u>WWW.Simrad.com/Products/Scientific products for fishery research</u> <u>applications/Echo Sounders/Simrad EK60/documents/Simrad ER60</u> <u>Operator manual Rev. C</u> . Single beam navigation timing error test procedures are the same as those listed for multi-beam in the NOS Hydrographic Specifications.
Ancillary sensors	Sensor offsets should be measured with accuracies and precisions to within cm level. Sensors (e.g., SVP, CTD) should be calibrated at least annually.